

Basin-scale variability of microbial methanol uptake in the 1

Atlantic Ocean 2

Stephanie L. Sargeant^{1*}, J. Colin Murrell², Philip D. Nightingale¹, Joanna L. Dixon¹ 3

4 ¹Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon, PL1 3DH, UK

5 ²School of Environmental Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK

6 7 *Now at: Centre for Research in Biosciences, University of the West of England, Frenchay Campus,

Coldharbour Lane, Bristol, BS16 1QY, UK.

8 Correspondence to: Joanna L. Dixon (jod@pml.ac.uk)

9 Abstract. Methanol is a climate active gas and the most abundant oxygenated volatile organic compound 10 (OVOC) in the atmosphere and seawater. Marine methylotrophs are aerobic bacteria that utilise methanol from 11 seawater as a source of carbon (assimilation) and/or energy (dissimilation). A few spatially limited studies have 12 previously reported methanol oxidation rates in seawater; however the basin-wide ubiquity of marine microbial 13 methanol utilisation remains unknown. This study uniquely combines seawater ¹⁴C labelled methanol tracer 14 studies with 16S rRNA pyrosequencing to investigate variability in microbial methanol dissimilation and known 15 methanol utilising bacteria throughout a meridional transect of the Atlantic Ocean between 47° N to 39° S. 16 Microbial methanol dissimilation varied between 0.05-1.68 nmol l⁻¹ h⁻¹ in the top 200 m of the Atlantic Ocean 17 and showed significant variability between biogeochemical provinces. The highest rates of methanol 18 dissimilation were found in the northern subtropical gyre (average 0.99 ± 0.41 nmol l^{-1} h⁻¹), which were up to 19 eight times greater than other Atlantic regions. Microbial methanol dissimilation rates displayed a significant 20 inverse correlation with heterotrophic bacterial production (determined using ³H-leucine). Despite significant 21 depth stratification of bacterial communities, methanol dissimilation rates showed much greater variability 22 between oceanic provinces compared to depth. There were no significant differences in rates between samples 23 collected under light and dark environmental conditions. The variability in the numbers of SAR11 (16S rRNA 24 gene sequences) were estimated to explain approximately 50% of the changes in microbial methanol 25 dissimilation rates. We estimate that SAR11 cells in the Atlantic Ocean account for between 0.3-59 % of the 26 rates of methanol dissimilation in Atlantic waters, compared to <0.01-2.3 % for temperate coastal waters. These 27 results make a substantial contribution to our current knowledge and understanding of the utilisation of 28 methanol by marine microbial communities, but highlight the lack of understanding of in situ methanol 29 production mechanisms. 30 31

32 1. Introduction

33 Methanol is the most abundant oxygenated volatile organic compound (OVOC) in the 34 background troposphere where it acts as a climate active gas, influencing the oxidative 35 capacity of the atmosphere, concentrations of ozone and hydroxyl radicals (Carpenter et al.,

1 2012). Methanol has been shown to be ubiquitous in waters of the Atlantic Ocean ranging 2 between <27-361 nM (Beale et al., 2013; Williams et al., 2004; Yang et al., 2013; Yang et 3 al., 2014). Our knowledge of the sources and sinks of methanol is limited and often lacks 4 consensus. For example, recent eddy covariance flux estimates demonstrated a consistent flux 5 of atmospheric methanol into the surface waters of a meridional transect of the Atlantic Ocean (Yang et al., 2013). However, along a similar transect, 12 months earlier, Beale et al. 6 7 (2013) calculated that the Atlantic Ocean represents an overall source of methanol to the atmosphere (3 Tg yr⁻¹), which was largely attributable to an efflux from the North Atlantic 8 9 gyre; where surface concentrations were as high as 361 nM. Wet deposition from rainwater 10 has also recently been suggested to represent a supply of methanol to the ocean (Felix et al., 11 2014).

12 Although *in situ* marine photochemical production of methanol has previously been found to 13 be insignificant (Dixon et al., 2013), there is thought to be a substantial unidentified 14 biological source of methanol in seawater (Dixon et al., 2011a). Biological production by 15 phytoplankton and during the breakdown of marine algal cells are possible sources (Heikes et 16 al., 2002; Nightingale, 1991; Sieburth and Keller, 1989). Recent laboratory culture 17 experiments suggest that methanol is produced by a wide variety of phytoplankton including 18 cyanobacteria (Prochlorococcus marinus, Synechococcus sp. and Trichodesmium 19 erythraeum) and Eukarya (Emiliania huxleyi, Phaeodactylum tricornutum and 20 Nannochloropsis oculata, Dunaliella tertiolecta) (Mincer and Aicher, 2016, Halsey et al., 21 2017). The mechanisms of *in situ* methanol production and their regulation remains largely 22 unknown, although Halsey et al. (2017) reported light-dependent rates of methanol 23 production in cultures of the marine green flagellate Dunaliella tertiolecta (cell size of 10-12 24 μm).

25 Methylotrophic bacteria are capable of utilising one-carbon compounds including methanol 26 as their sole source of energy (methanol dissimilation) and carbon (methanol assimilation). 27 Methylotrophs are widespread in terrestrial and aquatic systems (Kolb, 2009), but research 28 into these bacteria in marine environments is still at an early stage. Traditionally, 29 methylotrophs were thought to utilise methanol dehydrogenase (MDH encoded by mxaF, 30 McDonald and Murrell, 1997) to metabolise methanol to formaldehyde, with further 31 oxidation to CO₂ or incorporation of carbon into biomass (Chistoserdova, 2011; 32 Chistoserdova et al., 2009). However, recent progress in this field has resulted in the discovery of the xoxF gene, encoding an alternative MDH (Wilson et al., 2008) and 33

1 seemingly present in all known gram-negative methylotrophs to date (Chistoserdova, 2011; 2 Chistoserdova et al., 2009). The presence of methylotrophs in seawater has been confirmed 3 using a range of molecular approaches including functional gene primers, stable isotope 4 probing and metaproteomics (Dixon et al., 2013; Grob et al., 2015; Neufeld et al., 2008; 5 Neufeld et al., 2007; Taubert et al., 2015). There are also bacterial cells that utilise methanol 6 and other C_1 compounds for the production of energy but not biomass e.g. SAR11 for which 7 Sun et al. (2011) proposed the new term 'methylovores', distinct from true methylotrophs 8 which use C₁ compounds as sources of carbon and energy.

9 Limited studies of microbial methanol assimilation in the Atlantic Ocean have previously shown rates up to 0.42 nmol l⁻¹ h⁻¹ in recently upwelled coastal waters of the Mauritanian 10 Upwelling (Dixon et al., 2013). However, open ocean waters of the Atlantic were 11 substantially lower ranging between 0.002–0.028 nmol 1^{-1} h⁻¹ (Dixon et al., 2013). Microbial 12 methanol dissimilation rates are generally up to 1000-fold higher than rates of assimilation; 13 ranging between 0.70-11.2 and <0.001-0.026 nmol l^{-1} h⁻¹ respectively for coastal waters 14 (Sargeant et al., 2016; Dixon et al., 2011b). Methanol dissimilation rates ranging between 15 0.08-6.1 nmol l⁻¹ h⁻¹ have also been found in open ocean Atlantic waters (Dixon et al., 16 17 2011a). However, despite the ubiquity of methanol in seawater, the spatial extent or 18 quantification of microbial methanol utilisation for energy production on a basin scale has not 19 been previously investigated. Therefore, the objective of this research was to simultaneously 20 characterise the spatial variability in microbial methanol dissimilation rates (at depths to 200 21 m) and in microbial community groups throughout contrasting biogeochemical regions of the 22 Atlantic Ocean. This study represents the first basin-wide approach to investigating methanol 23 as a source of reducing power and energy for microbes.

24

25 2. Materials and Methods

26 2.1. Sampling strategy

Sampling was carried out during an Atlantic Meridional Transect (AMT) (<u>http://www.amt-uk.org</u>). The research cruise (JC039, RRS James Cook, 13/10/09–01/12/09) departed from
Falmouth, UK (50.15° N, 05.07° W) and arrived in Punta Arenas, Chile (53.14° S, 70.92°
W). Water samples were collected daily from pre-dawn (97, 33, 14 and 1 %
photosynthetically active radiation (PAR) equivalent depths and 200 m) and solar noon (97)

1 %) conductivity-temperature-depth (CTD) casts. The PAR equivalent depths were 5 m, 10-31 2 m, 15-54 m and 38-127 m for the 97, 33, 14, 1 % light levels respectively and typically varied 3 with oceanic province. The pre-dawn and solar noon sampling periods were approximately 4 45-65 nautical miles apart (sampling locations are shown in Fig. 1). The Atlantic Ocean was divided into five oceanic provinces, following the approach of Dixon et al. (2013), according 5 broadly to chlorophyll *a* concentrations ($<0.15 \text{ mg m}^{-3}$ gyre regions, $>0.15 \text{ mg m}^{-3}$ temperate 6 or upwelling regions, Fig. 1) with the northern gyre sub-divided into northern subtropical 7 8 gyre (NSG) and northern tropical gyre (NTG). Measurements of the concentration of 9 methanol in seawater (Beale et al. 2013) and of methanol assimilation rates (Dixon et al. 10 2013) made during this transect have been reported previously.

11

12 2.2. Microbial methanol uptake

13 The oxidation of methanol to CO₂ (dissimilation) was determined using ¹⁴C-labelled 14 methanol (American Radiolabelled Chemicals Inc, Saint Louis, MO, USA) seawater 15 incubations as previously described in Dixon et al. (2011b). Seawater samples of 1 ml were incubated with ~10 nM (final concentration) ¹⁴C-labelled methanol to measure rates of 16 microbial methanol dissimilation. Seawater methanol concentrations ranged between 48-361 17 18 nM (Beale et al., 2013) thus the radiotracer additions represent 3-21 % of in situ 19 concentrations in Atlantic waters. Incubations were conducted in triplicate, with 'killed' 20 controls (5 % trichloroacetic acid, TCA, final concentration), at in situ temperatures and in the dark. Incubation temperatures were determined by the sea surface temperature recorded 21 22 by the corresponding CTD casts. Sample counts of ¹⁴CO₂, captured in the precipitate as Sr¹⁴CO₃ (nCi ml⁻¹ h⁻¹), were divided by the total ¹⁴CH₃OH added to the sample (nCi ml⁻¹) to 23 calculate the apparent rate constants, k (h⁻¹). 24

25

The incorporation of methanol carbon into microbial biomass (assimilation) was determined using sample volumes of 320 ml to increase the total sample counts (Dixon et al., 2011b) following procedures outlined in Dixon et al. (2011b, 2013). Filter sample counts were divided by the total ¹⁴CH₃OH added to the sample (nCi ml⁻¹) to calculate the apparent rate constants, k (h⁻¹). For both methanol assimilation and dissimilation, the specific activity of ¹⁴C-labelled methanol (57.1 mCi mmol⁻¹) was multiplied by the apparent rate constants to calculate rates of microbial methanol uptake (nmol l⁻¹ h⁻¹) following the approach of Dixon et

- 1 al. (2013). Evaluation of control samples suggests that ≤ 0.3 % of the added ¹⁴CH₃OH is 2 recovered on the filters and ≤ 2 % in the resultant precipitate for methanol assimilation and 3 dissimilation respectively.
- 4

5 2.3. Bacterial leucine incorporation

Rates of bacterial leucine incorporation were measured using the incorporation of ³H-leucine into bacterial protein in seawater samples using the method described by Smith and Azam (1992). A final concentration of 25 nM (6.8 μ l) of ³H-leucine (calculated using the specific activity of 161 Ci mmol⁻¹, concentrations 1 mCi ml⁻¹, American Radiolabelled Chemicals Inc, Saint Louis, MO, USA) was incubated with 1.7 ml seawater samples. Incubations were conducted in triplicate with 'killed' controls (5 % TCA, final concentrations), at *in situ* temperature and in the dark.

13

14 2.4. Bacterial community composition

Seawater samples of approximately twenty litres were collected for bacterial DNA analysis from 97, 33, 1 and <1 % (200 m) PAR equivalent depths during pre-dawn CTD casts only. Samples were filtered through 0.22 µm Sterivex polyethersulfone filters (Millipore, Watford, UK) using a peristaltic pump. Filters were incubated with 1.6 ml of RNA Later (Life Technologies, to preserve samples during shipment) overnight at 4° C, after which the RNA Later was removed. Filters were stored immediately at -80° C before being shipped back to the UK on dry ice and subsequently stored at -20 °C.

22 Bacterial DNA was extracted from filters using a modified phenol:chloroform:isoamyl 23 alcohol extraction method as previously described in Neufeld et al. (2007). Extracted DNA 24 was cleaned using Amicon ultra-0.5 centrifugal filter devices (Millipore) to remove any RNA 25 Later residue. The 16S rRNA gene primers 341F (Muyzer et al., 1993) and 907R (Muyzer et 26 al., 1998) were used for PCR amplification (32 cycles) with an annealing temperature of 55° 27 C. Purification of PCR products from agarose gels was conducted using the QIAquick gel 28 extraction kit (Qiagen, Crawley, UK) before being sent to Molecular Research LP (MR DNA, 29 http://www.mrdnalab.com) for 454 pyrosequencing using the GS-flx platform.

1 The 16S rRNA gene sequences were depleted of barcodes and primers, and then sequences 2 less than 200 bp, with ambiguous bases or with homopolymer runs exceeding 6 bp, were 3 removed. Sequences were de-noised and chimeras removed. After the removal of singleton 4 sequences, operational taxonomic units (OTUs) were defined at 97 % 16S rRNA gene 5 identity using Quantitative Insights Into Microbial Ecology (QIIME, http://giime.org, Caporaso et al. 2010). The OTUs were assigned taxonomically using BLASTn (Basic Local 6 7 Alignment Search Tool, NCBI) against the Silva database (http://www.arb-silva.de). Sequences were randomly re-sampled to the lowest number of sequences per sample (386 8 9 sequences per DNA sample) to standardise the sequencing effort.

10

11 3. Results

12 3.1. Microbial methanol dissimilation

13 3.1.1 Surface

14 Pre-dawn surface rates of microbial methanol dissimilation ranged between 0.05–1.49 nmol l ¹ h⁻¹ throughout the transect of the Atlantic Ocean (Fig. 2a). Maximum variability in surface 15 rates of methanol dissimilation (average of 0.96 ± 0.45 nmol l⁻¹ h⁻¹, n=10) were observed 16 17 north of 25° N in NT and NSG regions. At the southern limit of the NSG, rates of methanol dissimilation decreased sharply from 1.48 to 0.34 nmol l⁻¹ h⁻¹. Generally, surface rates 18 19 continued to decrease in a southward direction throughout the NTG and EOU regions, reaching a minimum of 0.05 nmol l⁻¹ h⁻¹ in Equatorial upwelling waters. Interestingly, surface 20 rates started to gradually increase to 0.39 nmol l⁻¹ h⁻¹ in waters of the oligotrophic SG, before 21 declining to 0.18 nmol 1⁻¹ h⁻¹ in the ST area. Methanol dissimilation rates determined at pre-22 dawn (dark) generally exhibited a similar latitudinal pattern to those from solar noon (light). 23 24 Rates south of 25° N (NTG, EQU, SG, ST) showed a significant, almost 1:1 relationship, 25 between light (solar noon, y) and dark (pre-dawn, x) in situ sampling conditions (y=1.06x, 26 r=0.6240, n=13, P<0.05), with most variability between results from light versus dark 27 sampling occurring north of 25° N in NT and NSG provinces. This is most likely a reflection 28 of these waters exhibiting the greatest spatial variability, as the pre-dawn and midday stations 29 were typically 55 nautical miles apart.

30 3.1.2 Depth distributions

1 The average rates of methanol dissimilation with depth are shown in Fig. 3a for each oceanic province. Rates varied between 0.05–1.68 nmol l⁻¹ h⁻¹, but showed no consistent statistically 2 significant trend with depth. However, clear differences were observed in microbial methanol 3 dissimilation in the top 200 m between contrasting provinces in the Atlantic Ocean; where 4 NSG≥NT>SG≈ST≥NTG>EQU. The highest rates of methanol dissimilation in the top 200 m 5 were observed in the most northern latitudes (0.22-1.50 and 0.15-1.68 nmol l⁻¹ h⁻¹ for NT 6 and NSG respectively), consistent with surface trends (Fig. 2a). A strong decrease was 7 observed between the NSG (0.99 \pm 0.41 nmol $l^{-1} h^{-1}$) and the NTG (0.18 \pm 0.04 nmol $l^{-1} h^{-1}$) 8 9 regions. However, rates of microbial methanol dissimilation determined in the oligotrophic waters of the NTG (0.18 \pm 0.04 nmol l⁻¹ h⁻¹) and SG (0.24 \pm 0.12 nmol l⁻¹ h⁻¹) regions were 10 comparable with rates in the ST region $(0.20 \pm 0.05 \text{ nmol } 1^{-1} \text{ h}^{-1})$, with the EOU exhibiting the 11 lowest average rates of 0.11 ± 0.03 nmol l⁻¹ h⁻¹. 12

Overall, latitudinal trends in depth profiles for methanol dissimilation rates mirrored those found in surface waters. Surface microbial methanol dissimilation rates determined from predawn (x) water were compared to those from 200 m (y), which are in permanent darkness (the deepest 1 % PAR equivalent depth of 175 m was found was in the SG at ~19.50°S) and also showed a ~1:1 relationship (y=0.967x, r=0.9237, n=19, P<0.001).

18

19 3.2. Bacterial leucine incorporation rates

20 3.2.1 Surface

Rates of bacterial leucine incorporation (BLI) varied between 2.9–25.2 pmol l⁻¹ h⁻¹ in the pre-21 dawn surface waters of the Atlantic transect (Fig. 2b). On average, surface rates of BLI were 22 highest in the relatively more productive EQU upwelling region (18.3 \pm 4.8 pmol l⁻¹ h⁻¹), and 23 lowest in the northern sub-tropical gyre (NSG, 5.2 ± 2.3 pmol l⁻¹ h⁻¹). Surface rates of BLI 24 averaged 7.8 \pm 2.3 pmol l⁻¹ h⁻¹ and 7.7 \pm 2.4 pmol l⁻¹ h⁻¹ in the NTG and SG regions 25 respectively. The one measurement of BLI in the ST suggested much higher rates (25.2 pmol 26 1^{-1} h⁻¹) than previously determined during the transect, even when compared to the NT region 27 $(9.9 \pm 3.9 \text{ pmol } 1^{-1} \text{ h}^{-1})$. Pre-dawn (dark) rates of BLI generally exhibited a similar latitudinal 28 29 pattern to those from solar noon (light), with more variability between light and dark 30 sampling observed in the waters of the productive EQU region. Bacterial rates of leucine 31 incorporation determined from samples collected at solar noon (y) were approximately 20%

- 1 less than those determined at pre-dawn (y=0.7815x, r=0.7288, n=22, P<0.001), perhaps
- 2 reflecting a degree of light inhibition of heterotrophic bacterial production.

3

4 3.2.2 Depth profiles

Rates of bacterial leucine incorporation varied between 0.5-60.2 pmol l⁻¹ h⁻¹ throughout the 5 top 200 m of the water column. In the sunlit depths (97-1 % PAR) generally BLI rates 6 followed the pattern EOY>NTG~SG>NT>NSG (excluding the outliers of 60.2 and 31.3 pmol 7 I^{-1} h⁻¹ observed for the NSG at 14 % PAR from two depth profiles in this province). This 8 9 trend differs slightly from that observed for surface only data due to sub-surface (1-14 % PAR) maxima observed in both the north and south oligotrophic gyres (NSG, NTG, SG). In 10 11 the NT, NTG and EQU provinces, BLI rates were generally higher in sunlit depths compared 12 to the dark at 200 m (Fig. 3b). However, there were no statistical differences between the 13 provinces for rates of BLI determined at 200 m.

14

15 3.3. Bacterial community composition

16 3.3.1 Surface

17 The total number of operational taxonomic units (OTUs) sequenced throughout the Atlantic 18 Ocean varied between 91-207. Overall, the largest contributors to surface bacterial 19 communities were Prochlorococcus and SAR11 16S rRNA gene sequences (Fig. 5a); which 20 together accounted for between 21-60 % of all OTUs (21% in the SG and 60% in the NSG). 21 These bacteria typically numerically dominate surface waters of nutrient depleted oceanic 22 regions e.g. Gomez-Pereira et al. (2013). The numbers of Prochlorococcus, determined via 23 flow cytometry, for the same surface samples from which 16S rRNA genes were amplified range between 0.81 x 10^5 for the NTG region and 3.10 x 10^5 cells ml⁻¹ for the EQU region 24 25 (see Table 2 for summary). Prochlorococcus 16S rRNA gene sequences contributed an 26 average of 28 ± 12 % of the community composition of surface samples throughout the 27 surface Atlantic Ocean. Numbers of SAR11 16S rRNA gene sequences contributed a 28 maximum of 24 % to the total 16S rRNA gene sequences for the NSG region, and overall 29 contributed an average of 11 ± 3 % to the bacterial community in surface waters of the 30 Atlantic Ocean. There was a clear shift between surface bacterial communities in the two

northern gyre provinces with *Prochlorococcus* and SAR11 16S rRNA gene sequences
 decreasing from the NSG to the NTG region (59 and 33 % of total 16S rRNA gene sequences
 respectively). *Oceanspirillales* and *Flavobacterales* 16S rRNA gene sequences contributed
 approximately double the amount (compared to the total 16S rRNA sequences) in the NTG
 compared to the NSG region (25 and 12 % respectively).

6

Microbial communities of the surface waters of the NT, NSG and EQU provinces were dominated by *Prochlorococcus*, *Alteromonadales* and SAR11, together representing between 64–72 % of 16S rRNA gene sequences. These orders were less dominant in the more oligotrophic waters of the NTG and SG, accounting for 43 % and 34 % of 16S rRNA gene sequences respectively. In these oligotrophic regions (NTG and SG) microbial communities appear less dominated by a few orders, with a more even spread of bacterial orders contributing to the community composition (Fig. 5a).

14

15 3.3.2 Depth profiles

The largest contributors to bacterial communities at the 33 % PAR depths were, like surface
communities, *Prochlorococcus* and SAR11 16S rRNA gene sequences (Fig. 5b). Together

18 they accounted for between 47-70 % of all OTUs, with the minimum and maximum

19 contributions in the SG and EQU provinces respectively. If the proportion of sequences

20 contributing individually <5% were included then collectively they accounted for between

21 69-91 % of all 16S rRNA gene sequences. The main differences between the surface and

22 33% PAR equivalent depth (14-31 m) are the increasing dominance of the cyanobacteria

23 Prochlorococcus, and the decrease in relative contribution of Alteromonadales at 33% PAR

- 24 depths, particularly in the NT region.
- 25

26 In the darker 1 % PAR depths (59-127 m) Prochlorococcus and SAR11 16S rRNA gene

27 sequences (Fig. 5c) still accounted for between 32-65 % of all OTUs, with the minimum and

28 maximum contributions in the SG and EQU respectively. With the addition of sequences for

29 each Order contributing <5 % to the total 16SrRNA gene sequences, these three categories

30 accounted for 60-81% of all 16S rRNA gene sequences retrieved throughout each of the

31 regions sampled. Two notable differences at this light level in the SG region compared to the

32 other provinces are the 12 % contribution made by the Order III Incertae Sedis which belongs

33 to the *Bacteroidetes* class, and the relative reduction in contribution made by

34 *Prochlorococcus* (11 % compared to an Atlantic average of 27±15 % at 1 % PAR). However,

1 the latter trend is not confirmed in the cell numbers of *Prochlorococcus* determined via flow

- 2 cytometry (Table 2).
- 3

4 In the permanent dark of 200 m, SAR11 bacteria contributed between 14-29 % in northern

5 regions, which contrasted to only 4-5 % in the EQU and SG provinces. The SAR324 clade

- 6 contributed 8-11 % in the northern gyre. Both uncultivated bacteria and those that
- 7 individually comprised <5 % contributed relatively highly to the OTUs (10-36 % and 21-33
- 8 % respectively). These two groupings together with the SAR11 and SAR324 make up 83-89

9 % in northern regions and between 37-56 % in the SG and EQU provinces respectively. For

10 the EQU region the Alteromonadales order is also significant at 25 % (which collectively

11 comprise 81 % of all OTUs for EQU), whilst for the SG the cyanobacteria Prochlorococcus

12 and *Synechococcus* comprise 52 % (which collectively comprise 89 % of all OTUs for SG).

13

14 4. Discussion

15 4.1. Basin scale variability in biological methanol uptake

Maximum rates of methanol dissimilation in the Atlantic Ocean were recorded in the NSG 16 province at 33 % PAR light depth (25 m, 1.68 nmol 1⁻¹ h⁻¹, Fig. 2 and Fig. 4a). An overview 17 of the variation in rates of methanol dissimilation to CO_2 throughout the top 200 m of the 18 19 water column in the Atlantic Ocean is shown in Fig. 4a, which illustrates sub-surface maxima 20 in northerly latitudes. However, no statistically significant differences were calculated 21 between rates of methanol dissimilation in the euphotic zone (97-1 % PAR) compared to the 22 aphotic zone (samples from 200 m) in the NSG (t_{NSG} =2.63, t_{20} =2.85 for P<0.01), NTG (t_{NTG} = 0.02, t12=3.05 for P<0.01), EQU (tEQU=1.01, t18=2.88 for P<0.01) and SG regions (tSG=0.88, 23 24 t_{19} =2.88 for P<0.01). This is consistent with a previous study in the north east Atlantic Ocean, 25 which similarly reported no significant variability in methanol dissimilation rates with depth 26 (Dixon and Nightingale, 2012). Nevertheless, greater variability with depth was observed for 27 methanol dissimilation rates from the northern gyre (F_{NSG} =3.22 where $F_{3.17}$ =3.20, P<=0.05 28 and F_{NTG}=5.14 where F_{2.10}=4.10, P<0.05). Variability in rates from the euphotic zone were 29 found to be significantly higher than those from 200 m in northern (t_{NT} =3.17, t_{20} =2.85 for 30 P<0.01) and southern temperate regions ($t_{ST}=5.03$, $t_{10}=3.17$ for P<0.01). 31

32 Although the highest rates of methanol dissimilation were determined in the NSG, these 33 values were approximately seven times lower than the maxima determined during a seasonal

study of the temperate western English Channel (0.5-11.2 nmol l^{-1} h⁻¹, Sargeant et al., 2016). 1 Rates determined in the temperate waters of the south Atlantic (0.11–0.45 nmol l⁻¹ h⁻¹) are 2 most comparable to the lowest rates determined during late spring and early summer of ~ 0.50 3 nmol l⁻¹ h⁻¹ in temperate northern coastal waters (Sargeant et al., 2016). The seasonal study 4 in the western English Channel showed maximum rates of up to 11.2 nmol l⁻¹ h⁻¹ during 5 autumn and winter months (Sargeant et al., 2016). The differences in methanol dissimilation 6 rates between the temperate waters of the North $(0.83\pm0.42 \text{ nmol } l^{-1} \text{ h}^{-1})$ and South 7 (0.27±0.13 nmol l⁻¹ h⁻¹) Atlantic may therefore reflect seasonal differences between 8 9 hemispheres i.e. sampling in the NT region occurred during late autumn compared to late 10 spring in the ST region.

11

Methanol assimilation rates were generally two orders of magnitude lower than dissimilation 12 rates, reaching a maximum of 0.028 nmol l⁻¹ h⁻¹ in the top 200m throughout the Atlantic 13 14 Ocean (Fig. 4b). Rates of methanol assimilation exhibited sub-surface maxima (at 33% PAR equivalent depth) which were particularly evident just north of the Equator (EOU) and in the 15 northern gyre (NSG) of 0.015±0.004 nmol l⁻¹ h⁻¹. These subsurface rates were on average 16 higher than surface values $(0.004\pm0.004 \text{ nmol } l^{-1} \text{ h}^{-1})$. Results are similar to findings by 17 18 Dixon and Nightingale (2012) who also demonstrated sub-surface maxima between 20-30 m 19 in the north east Atlantic. The methanol assimilation rates are shown for direct comparison to 20 dissimilation, but have been previously discussed in more detail in Dixon et al. (2012).

21

22 4.2. Bacterial community and productivity

In contrast to microbial methanol dissimilation, rates of bacterial leucine incorporation were 23 lowest in the northern oligotrophic gyre (NSG 5.2 \pm 2.3 pmol 1⁻¹ h⁻¹, NTG 7.8 \pm 2.3 pmol 1⁻¹ 24 h^{-1}) reflecting lower microbial activity in these regions of the Atlantic. Surface microbial 25 26 methanol dissimilation rates exhibited a statistically significant inverse correlation with 27 bacterial leucine incorporation, (r = -0.351, n = 36, $P \le 0.05$). This is consistent with 28 findings from a seasonal study in the western English Channel, where surface rates of 29 methanol dissimilation were also inversely correlated to bacterial production (Sargeant et al., 2016). For all the depth data a negative correlation was also found in the NTG, EQU and SG 30 31 regions (r = -0.372, n = 52, $P \le 0.01$), but NT and NSG areas showed methanol dissimilation 32 rates independent of BLI. The productivity of heterotrophic bacteria is generally associated 33 with the concentrations of phytoplankton-derived dissolved organic matter (DOM) e.g.

1 proteins, lipids and carbohydrates which are utilised as sources of energy and carbon (Benner 2 and Herndl, 2011; Nagata, 2008; Ogawa and Tanoue, 2003). Results from this present study 3 indicate that in regions of low heterotrophic bacterial production i.e. in the northern Atlantic 4 Gyre (minimum rate of bacterial leucine incorporation of 3 pmol $I^{-1} h^{-1}$) rates of methanol 5 dissimilation were relatively higher. In oligotrophic regions, phytoplankton-derived DOM is 6 scarce, suggesting that those bacteria able to metabolise methanol are using the carbon from 7 methanol as an alternative source of energy (and to a lesser extent carbon).

8 Although the bacterial community 16S rRNA gene sequence data did not display any clear 9 patterns with changing biogeochemical province (in contrast to microbial methanol 10 dissimilation rates), the bacterial community was shown to be depth-stratified throughout the 11 Atlantic Ocean (Fig. 6a). A non-metric multi-dimensional scale (MDS) plot of a Bray-Curtis similarity matrix of 16S rRNA gene sequences (Fig. 6a) found bacterial community samples 12 to cluster into three distinct groupings possibly reflecting light levels: sunlit (97 and 33 % 13 14 PAR), minimal light (1 % PAR) and dark (200 m). Bacterial community samples from the 15 same PAR equivalent depths were found to group together regardless of biogeochemical 16 province. A larger cluster formed of samples from 97 and 33% PAR is likely to be formed of 17 bacterial communities originating from the well-mixed surface layer of the water column, 18 accounting for their similarity in composition. When all environmental parameters were 19 considered together (including bacterial numbers and BLI) a Euclidean distance matrix non-20 metric MDS also demonstrated photic waters (97-1 % PAR) clustered together, and were 21 significantly different to dark waters from 200m (Fig. 6b). However, no significant 22 differences were observed between rates of methanol dissimilation determined from the 23 euphotic zone (samples from 97-1 % PAR equivalent depths) compared to the aphotic zone 24 (samples from 200 m depth) for gyre and equatorial regions (NSG $t_{NSG}=2.63$ ($t_{20}=2.85$ for P<0.01), NTG $t_{NTG}=0.02$ ($t_{12}=3.05$ for P<0.01), EQU $t_{EOU}=1.01$ ($t_{18}=2.88$ for P<0.01) and SG 25 26 t_{SG}=0.88 (t₁₉=2.88 for P<0.01)) although, clear differences between provinces were evident 27 (Fig. 6c). This is consistent with results from Dixon and Nightingale (2012) who also found 28 no significant variation of methanol dissimilation with depth in the north east Atlantic Ocean. 29 These data suggest that light levels do not have a strong role to play in microbial methanol 30 dissimilation in waters of the Atlantic, despite the overall bacterial community showing 31 strong variability with depth (or incident light). Depth-stratification of microbial communities 32 has been observed previously by Carlson et al. [2004], DeLong et al. [2006] and between 33 euphotic and aphotic zones in the north western Sargasso Sea (Carlson et al., 2004).

Heywood et al. (2006) suggested that the physical separation of low nutrient surface waters in gyre regions from mixing with more nutrient rich waters below a defined pycnocline, in combination with differing levels of light availability, could partially explain changes in bacterial community composition throughout the water column. Therefore, these results could indicate that methanol dissimilation is limited to specific microbial groups that are present relatively uniformly between the surface and 200m, although more depth variability is shown north of 250N where rates of methanol dissimilation are the highest and most variable.

8

9 4.3. Methanol dissimilation and SAR11

10 SAR11 cells have been shown to utilise methanol, but only as a source of energy (Sun et al., 11 2011). The numbers of SAR11 16S rRNA gene sequences exhibited a statistically significant 12 correlation with rates of microbial methanol dissimilation throughout the Atlantic basin (r =13 0.477, n = 20, P < 0.05), where the number of SAR11 16S rRNA gene sequences explained approximately half of the spatial variability in rates of methanol dissimilation. In culture, 14 15 SAR11 cells (strain HTCC1062) have previously been shown to utilise methanol as a source of energy at a rate of $\sim 5 \times 10^{-20}$ moles cell⁻¹ h⁻¹ (Sun et al., 2011), which equates to 2 nmol l⁻¹ 16 h^{-1} (using a culture cell abundance of 4 x 10⁷ cells mL⁻¹, Sun et al., 2011). SAR11 cells 17 dominate $(59 \pm 4\%)$ the low nucleic acid (LNA) fraction of bacterioplankton consistently 18 across the Atlantic Ocean, where typically numbers of LNA range between $0.2-1.0 \times 10^9$ cells 19 1^{-1} (Mary et al., 2006a). Thus estimates of *in situ* SAR11 numbers range between 0.12-0.59 x 20 10^9 cells l⁻¹. This is consistent with estimates from the Sargasso Sea of ~0.1 x 10^9 cells l⁻¹ 21 22 (where they are reported to contribute ~25% of total prokaryotic abundance of 0.4×10^6 cells mLl⁻¹, Malmstrom et al., 2004). Thus, we estimate that SAR11 cells of the Atlantic Ocean 23 could be oxidising methanol at rates between 5-29.5 pmol l⁻¹ h⁻¹, which could account for 24 25 between 0.3-59 % of the rates of methanol dissimilation in surface Atlantic waters.

A seasonal investigation in the western English Channel reported bacterial numbers ranging between 2.0-15.8 $\times 10^5$ cells ml⁻¹ (Sargeant et al., 2016) which agrees well with data from Mary et al. (2006b, 2.0-16.0 $\times 10^5$ cells ml⁻¹). Assuming that SAR11 contribute between 9-20% of total bacterioplankton (Mary et al., 2006b) suggests SAR11 numbers range between 0.18-3.16 $\times 10^5$ cells ml⁻¹ at this coastal site. Using the above estimate of ~5 $\times 10^{-20}$ moles cell⁻¹ h⁻¹ for rates of methanol dissimilation in cultured SAR11 cells suggests that SAR11 could oxidise methanol at rates ranging between 0.9-15.8 pmol l⁻¹ h⁻¹ in temperate coastal regions.

1 This equates to <0.01-2.3% of microbial community methanol dissimilation rates (0.7-11.2 2 nmol l⁻¹ h⁻¹, Sargeant et al., 2016). Therefore, we suggest that cells of the SAR11 clade are 3 more likely to make a larger contribution to marine microbial methanol dissimilation in open 4 ocean environments, where alternative sources of carbon are more limited relative to 5 temperate coastal waters.

6

7 Methylotrophic bacteria such as Methylophaga sp., Methylococcaceae sp. and 8 Hyphomicrobium sp. have been previously identified, using mxaF functional gene primers 9 (which encode for the classical methanol dehydrogenase), from the upper water column of 10 Atlantic Ocean provinces (Dixon et al., 2013). More recently the XoxF gene, which encodes 11 an alternative methanol dehydrogenase, has also been found to be widespread in coastal 12 marine environments (Taubert et al., 2015). SAR11 bacteria are thought to contain an Fe 13 alcohol dehydrogenase, which although not specific for methanol, can oxidise methanol (and 14 other short chain alcohols) to formaldehyde which is then thought to be converted to CO_2 by 15 a methyl-THF linked oxidation pathway to produce energy (Sun et al., 2012). Thus it seems 16 likely that both methylotrophic bacteria possessing mxaF and/or xoxF, together with microbes such as SAR11 (Sun et al., 2011), are largely responsible for the turnover of 17 18 methanol in seawater.

19

20 4.4. Marine methanol cycling

21 Data from this study substantially add to the measurements of microbial methanol 22 dissimilation rates in seawater. This extended spatial coverage clearly demonstrates that 23 methanol dissimilation is a widespread microbial process taking place in light and dark 24 environments throughout the Atlantic Ocean. Dissimilation rates are typically two orders of 25 magnitude greater than assimilation rates across most of the Atlantic Basin. These data 26 suggest that methanol is an important source of energy for microbes. This is particularly true 27 in the northern oligotrophic waters of the Atlantic Ocean, where corresponding in situ 28 methanol concentrations range between 148-281 nM (Table 1). What is not clear is the source 29 of methanol in open ocean waters, which is suspected to be biological in nature (Dixon et al., 30 2011a). Although direct flux estimates suggest that the atmosphere could also act as a source 31 to the ocean (Yang et al, 2013), the magnitude of this flux is insufficient to support the

observed rates of microbial methanol consumed by bacteria, and hence is suspected to be a minor contribution (Dixon et al., 2011a). Recent culture studies indicate that *Prochlorococcus sp., Synechococcus* sp. and *Trichodesmium sp.* could produce methanol (Mincer and Aicher, 2016, Halsey et al., 2017), but *in situ* production mechanisms are unknown. Further work is needed to fully elucidate and quantify the sources of methanol in marine waters.

7

8 5. Conclusions

9 This study reports the first basin-wide understanding of microbial methanol dissimilation 10 rates in seawater. Radiochemical assays have demonstrated active metabolism throughout the 11 top 200 m of the water column, with rates being substantially higher in the northern 12 subtropical Atlantic gyre. Microbial methanol dissimilation rates showed a positive 13 correlation with the numbers of SAR11 16S rRNA gene sequences, and an inverse 14 relationship with bacterial leucine incorporation. Future work should determine marine 15 methanol sources and understand the relative contribution of various microbial orders to 16 methanol loss processes.

17

18 Acknowledgements

19 We thank all scientists, officers and crew of the RRS James Cook during JC029. We also

20 thank Rachael Beale for determining methanol concentrations, Glen Tarran for flow

21 cytometry data, Karen Tait, Yin Chen and Michael Cunliffe for advice with molecular

22 biology work. Satellite data were processed by the NERC Earth Observation Data

23 Acquisition and Analysis Service (NEODAAS) at Plymouth Marine Laboratory

24 (<u>http://www.neodaas.ac.uk</u>). This work was funded by the UK Natural Environmental

25 Research Council (NERC) and the Earth and Life Systems Alliance, Norwich Research Park.

26 This study is also a contribution to the international IMBeR project and was also supported

- 27 by the UK Natural Environment Research Council National Capability funding to Plymouth
- 28 Marine Laboratory and the National Oceanography Centre, Southampton. This is contribution
- 29 number 323 of the AMT programme.

1 Conflict of Interest Statement

- 2 The Authors declare no conflict of interest with this manuscript.
- 3

4 References

5	Beale, R., J. L. Dixon, S. R. Arnold, P. S. Liss, and P. D. Nightingale (2013), Methanol,
6	acetaldehyde, and acetone in the surface waters of the Atlantic Ocean, Journal of
7	Geophysical Research: Oceans, 118(10), 5412-5425, doi: 10.1002/jgrc.20322.
8	Benner, R., and G. Herndl (2011), Bacterially derived dissolved organic matter in the
9	microbial carbon pump, in Microbial carbon pump in the ocean edited by N. Jiao, F.
10	Azam and S. Sanders, pp. 46-48, Science/AAAS, Washington.
11	Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, et al. (2010), QIIME allows
12	analysis of high-throughput community sequencing data, Nature Methods, 7, 335-336,
13	doi: 10.1038/nmeth.f.303.
14	Carlson, C. A., S. J. Giovannoni, D. A. Hansell, S. J. Goldberg, R. Parsons, and K. Vergin
15	(2004), Interactions among dissolved organic carbon, microbial processes, and
16	community structure in the mesopelagic zone of the northwestern Sargasso Sea,
17	Limnology and Oceanography 49, 1073-1083, doi: 10.4319/lo.2004.49.4.1073.
18	Carpenter, L. J., S. D. Archerand R. Beale (2012), Ocean-atmosphere trace gas exchange,
19	Chem. Soc. Rev., 41, 6473-6506, doi:10.1039/c2cs35121h
20	Chistoserdova, L. (2011), Modularity of methylotrophy, revisited, Environmental
21	Microbiology, 13(10), 2603-2622, doi: 10.1111/j.1462-2920.2011.02464.x.
22	Chistoserdova, L., M. G. Kalyuzhnaya, and M. E. Lidstrom (2009), The expanding world of
23	methylotrophic metabolism, Annual Review of Microbiology, 63, 477, doi:
24	10.1146/annurev.micro.091208.073600.
25	DeLong, E. F., C. M. Preston, T. Mincer, V. Rich, S. J. Hallam, NU. Frigaard, A. Martinez,
26	M. B. Sullivan, R. Edwards, and B. R. Brito (2006), Community genomics among
27	stratified microbial assemblages in the ocean's interior, Science 311, 496-503, doi:
28	10.1126/science.1120250.
29	Dixon, J. L., and P. D. Nightingale (2012), Fine scale variability in methanol uptake and
30	oxidation in the micro-layer and near-surface waters of the Atlantic, Biogeosciences,
31	9, 2961-2972, doi: 10.5194/bg-9-2961-2012.

1 Dixon, J. L., R. Beale, and P. D. Nightingale (2011a), Rapid biological oxidation of methanol 2 in the tropical Atlantic: significance as a microbial carbon source, Biogeosciences, 8, 3 2707-2716, doi: 10.5194/bg-8-2707-2011. 4 Dixon, J. L., R. Beale, and P. D. Nightingale (2011b), Microbial methanol uptake in northeast 5 Atlantic waters, The ISME Journal, 5, 704 - 716, doi: 10.1038/ismej.2010.169. 6 Dixon, J. L., S. Sargeant, P. D. Nightingale, and J. C. Murrell (2013), Gradients in microbial 7 methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the 8 Atlantic Ocean, The ISME Journal, 7, 568-580, doi: 10.1038/ismej.2012.130. 9 Felix, J. D., S. B. Jones, G. B. Avery, J. D. Willey, R. N. Mead, and R. J. Kieber (2014), 10 Temporal and spatial variations in rainwater methanol, Atmospheric Chemistry and 11 Physics Discussions, 14, 1375 - 1398, doi: 10.5194/acpd-14-1375-2014. 12 Gómez-Pereira, P. R., M. Hartmann, C. Grob, G. A. Tarran, A. P. Martin, B. M. Fuchs, D. J. 13 Scanlan and M. V. Zubkov (2013), Comparable light stimulation of organic nutrient 14 uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre, The ISME Journal 7, 603-614; doi:10.1038/ismej.2012.126 15 16 Grob, C., M. Taubert, A. M. Howat, O. J. Burns, J. L. Dixon, H. H. Richnow, N. Jehmlich, 17 M. Bergen, Y. Chen, and J. C. Murrell (2015), Combining metagenomics with 18 metaproteomics and stable isotope probing reveals metabolic pathways used by a 19 naturally occuring marine methylotroph, Environmental Microbiology 17, 4007-20 47018; doi: 10.1111/1462-2920.12935. 21 Halsey, KH, Giovannoni, SJ, Graus, M, Zhao, Y, Landry, Z, Thrash, JC, Vergin KL, de 22 Gouw J (2017), Biological cycling of volatile organic carbon by phytoplankton and 23 bacterioplankton. Limnology and Oceanography 62. 2650-2661: doi: 24 10.1002/lno.10596. 25 Heikes, B., W. Chang, M. Pilson, E. Swift, et al. (2002), Atmospheric methanol budget and 26 implication, Global **Biogeochemical** Cycles, 16. 1133. doi: ocean 27 10.1029/2002GB001895. 28 Heywood, J., M. Zubkov, G. Tarran, B. Fuchs, and P. Holligan (2006), Prokaryoplankton 29 standing stocks in oligotrophic gyre and equatorial provinces of the Atlantic Ocean: 30 evaluation of inter-annual variability, Deep Sea Research Part II: Topical Studies in 31 Oceanography, 53, 1530-1547, doi: 10.1016/j.dsr2.2006.05.005. 32 Kolb, S. (2009), Aerobic methanol-oxidising bacteria in soil, FEMS Microbiology Letters, 1 -33 10, doi: 10.1111/j.1574-6968.2009.01681.x.

1	Malmstrom, R. R., Kiene, R. P., Cottrell, M. T., & Kirchman, D. L. (2004). Contribution of
2	SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the
3	North Atlantic Ocean. Applied and Environmental Microbiology, 70, 4129-4135.
4	Mary, I., J. L. Heywood, B. M. Fuchs, R. Amann, G. A. Tarran, P. H. Burkill, and M. V.
5	Zubkov (2006a), SAR11 dominance among metabolically active low nucleic acid
6	bacterioplankton in surface waters along an Atlantic meridional transect, Aquatic
7	microbial ecology, 45, 107-113, doi: 10.3354/ame045107.
8	Mary, I., D. Cummings, I. Biegala, P. Burkill, S. Archer, and M. Zubkov (2006b), Seasonal
9	dynamics of bacterioplankton community structure at a coastal station in the western
10	English Channel, Aquatic Microbial Ecology, 42, 119-126, doi: 10.3354/ame042119.
11	Mincer, T.J., and A. C. Aicher (2016), Methanol production by a broad phylogenetic array of
12	marine phytolankton, Plos One, 11, doi: 10.1371/journal.pone.0150820.
13	McDonald, I. R., and J. C. Murrell (1997), The methanol dehydrogenase structual gene mxaF
14	and its use as a functional gene probe for methanotrophs and methylotrophs, Applied
15	and Environmental Microbiology, 63, 3218-3224.
16	Muyzer, G., E. C. De Waal, and A. G. Uitierlinden (1993), Profiling of complex microbial
17	populations by Denaturing Gradient Gel Electrophoresis analysis of Polymerase
18	Chain Reaction-amplified genes coding for 16S rRNA, Applied and Environmental
19	Microbiology, 59, 695-700.
20	Muyzer, G., T. Brinkhoff, U. Nubel, C. Santegoeds, H. Schäfer, and C. Waver (1998),
21	Denaturing gradient gel electrophoresis (DGGE) in microbial ecology, in Molecular
22	Microbial Ecology Manual, edited by J. D. van Elsas and F. J. de Bruijn, pp. 1-27,
23	Kluwer Academic Publishers, Dordrecht, The Netherlands.
24	Nagata, T. (2008), Organic matter - bacteria interactions in seawater, in Microbial Ecology of
25	the Oceans, edited by D. L. Kirchman, John Wiley and Sons, New Jersey.
26	Neufeld, J. D., Y. Chen, M. G. Dumont, and J. C. Murrell (2008), Marine methylotrophs
27	revealed by stable-isotope probing, multiple displacement amplification and
28	metagenomics, Environmental Microbiology, 10, 1526-1535, doi: 10.1111/j.1462-
29	2920.2008.01568.x.
30	Neufeld, J. D., H. Schafer, M. J. Cox, R. Boden, I. R. McDonald, and J. C. Murrell (2007),
31	Stable-isotope probing implicates Methylophaga spp and novel
32	Gammaproteobacteria in marine methanol and methylamine metabolism., The ISME
33	Journal, 1, 480 - 491, doi: 10.1038/ismej.2007.65.

1	Nightingale, P. D. (1991), Low molecular weight halocarbons in seawater, Ph.D. thesis,
2	University of East Anglia, Norwich, UK.
3	Ogawa, H., and E. Tanoue (2003), Dissolved organic matter in oceanic waters, Journal of
4	Oceanography, 59, 129-147.
5	Sargeant, S. L., J. C. Murrell, P. D. Nightingale, and J. L. Dixon (2016), Seasonal variability
6	in microbial methanol utilisation in coastal waters of the western English Channel.,
7	Marine Ecology Progress Series, 550, 53 - 64.
8	Sieburth, J. M., and M. D. Keller (1989), Methylaminotrophic bacteria in xenic nanoalgal
9	cultures: Incidence, significance, and role of methylated algal osmoprotectants,
10	Biological Oceanography, 6(5-6), 383-395, doi: 10.1080/01965581.1988.10749541.
11	Smith, D. C., and F. Azam (1992), A simple, economical method for measuring bacterial
12	protein synthesis rates in seawater using ³ H-leucine, Marine Microbial Food Webs, 6,
13	107-114.
14	Sun, J., L. Steindler, J. C. Thrash, K. H. Halsey, D. P. Smith, A. E. Carter, Z. C. Landry, and
15	S. J. Giovannoni (2011), One carbon metabolism in SAR11 pelagic marine bacteria,
16	Plos One, 6, doi: 10.1371/journal.pone.0023973.
17	Taubert, M., C. Grob, A. M. Howat, O. J. Burns, J. L. Dixon, Y. Chen, and J. C. Murrell
18	(2015), xoxF encoding an alternative methanol dehydrogenase is widespread in
19	coastal marine environments, Environmental Microbiology, 17, 3937 - 3948, doi:
20	10.1111/1462-2920.12896.
21	Williams, J., R. Holzinger, V. Gros, X. Xu, E. Atlas, and D. W. R. Wallace (2004),
22	Measurements of organic species in air and seawater from the tropical Atlantic,
23	Geophysical Research Letters, 31, doi: 10.1029/2004GL020012.
24	Wilson, S. M., M. P. Gleisten, and T. J. Donohue (2008), Identification of proteins involved
25	in formaldehyde metabolism by Rhodobacter sphaeroides, Microbiology, 154, 296-
26	305, doi: 10.1099/mic.0.2007/011346-0.
27	Yang, M., P. D. Nightingale, R. Beale, P. S. Liss, B. Blomquist, and C. Fairall (2013),
28	Atmospheric deposition of methanol over the Atlantic Ocean, Proceedings of the
29	National Academy of Sciences USA, 110, 20034 - 20039, doi:
30	10.1073/pnas.1317840110.
31	Yang, M., R. Beale, P. Liss, M. Johnson, B. Blomquist, and P. D. Nightingale (2014), Air-sea
32	fluxes of oxygenated volatile organic compounds accross the Atlantic Ocean,
33	Atmospheric Chemistry and Physics, 14, 7499-7517, doi: 10.5194/acpd-14-8015-
34	2014.

1 Figure and Table legends.

2	Figure 1. Remotely sensed MODIS-Aqua chlorophyll a composite image of the Atlantic
3	Ocean from November 2009 (image courtesy of NEODAAS). White squares represent
4	sampling points and circles indicate samples within different oceanic provinces, labelled with
5	province names NT (northern temperate), NSG (northern subtropical gyre), NTG (northern
6	tropical gyre), EQU (equatorial upwelling), SG (southern gyre), ST (southern temperate).
7	
8	Figure 2. Variability in a) microbial methanol dissimilation rates (using the specific activity
9	of ¹⁴ CH ₃ OH) and b) bacterial leucine incorporation (BLI), in surface waters of the Atlantic
10	Ocean. Rates were determined from pre-dawn (solid line) and solar noon (dashed line)
11	CTD casts. Error bars represent ±1 s.d. of triplicate samples, dashed vertical lines indicate
12	Atlantic province boundaries.
13	
14	Figure 3. Average depth profiles in Atlantic provinces for a) microbial methanol
15	dissimilation (using the specific activity of ¹⁴ CH ₃ OH) and b) bacterial leucine incorporation
16	(BLI) in pre-dawn waters. Error bars represent ± 1 s.d. of variation within the province,
17	province averages derived from NT (n = 5), NSG (n = 5), NTG (n = 3), EQU (n = 4), SG (n = $(n = 3)$)
18	5) and ST ($n = 3$), except for BLI where there is no data from the ST.
19	
20	Figure 4. Microbial methanol (a) dissimilation and (b) assimilation rates (nmol $l^{-1} h^{-1}$) in the
21	top 200 m of an Atlantic Meridional transect (contour plots).
22	
23	Figure 5. Changes in bacterial community composition (Order, identified using 16S rRNA
24	gene sequencing) for a) 97 % PAR surface 5m, b) 33 % PAR 10-31m, c) 1 % PAR 15-54m
25	and d) 200 m for different provinces (NT, NSG, NTG, EQU and SG) of the Atlantic Ocean.
26	Analysis is based on a rarefied sample of 386 sequences per sample. Bacterial Orders
27	individually contributing to less than 5% of the total sample sequences were pooled together
28	into 'Others (<5%)' for clarity. Where 🗔 Prochlorococcus, CAlteromonadales, 🚥
29	SAR11 clade, 🎟 Oceanospirillales, 🗁 Rhodospirillales, 📟 Flavobacteriales, 💻
30	Rhodobacterales, 💽 Sphingomonadales, 🖂 Synechococcus, 🌉 Acidimicrobiales, 📷
31	Order III Incertae Sedis, SAR324 clade (Marine group B), and uncultivated bacterium,
32	other bacteria individually comprising <5%.
33	

1	Figure 6. Non-metric multi-dimensional scale (MDS) plots of (a) a Bray-Curtis similarity
2	matrix of the 16S rRNA gene sequences of the bacterial community, (b) a Euclidean distance
3	matrix of environmental parameters (salinity, temperature, chl. a, primary productivity,
4	inorganic nutrients, flow cytometry cell numbers, BLI) and (c) a Euclidean distance matrix of
5	rates of methanol dissimilation. Dashed lines highlight significant sample grouping. Plots
6	generated using PRIMER-E (<u>www.primer-e.com</u>). For (a) and (b) ■ represents samples from
7	200 m i.e. 0 % PAR.
8	
9	
10	
11	Table 1. Summary of rates of methanol uptake (dissimilation and assimilation), methanol
12	concentrations, bacterial leucine incorporation (BLI) and production (BP), numbers of
13	heterotrophic bacteria (BN), Prochlorococcus (Pros) and Synechococcus (Syns).
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	

Figure 1.

Figure 2.

1.8 ST^(a) NTG SG EQU NT NSG 1.6 Methanol dissimilation (nmol L⁻¹ h⁻¹) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Ŷ 0.0 -50 -40 -30 -20 -10 0 10 20 30 40

Latitude (-ve N, +ve S)

24

Figure 3.

Figure 4.

Figure 5.

Table 1. Summary of rates of methanand production (BP), numbers of heter	ol uptake (dissin otrophic bacteria	nilation and ass (BN), <i>Prochlo</i>	similation), met	thanol concentr) and <i>Synechoc</i>	rations, bacteria	l leucine incor	poration (BLI)
				Atlantic]	province		
	Overall	LN	NSG	NTG	EQU	\mathbf{SG}	\mathbf{ST}
Methanol dissimilation $(nmol L^{-1} h^{-1})$	0.45 ± 0.42 (0.01 -1.68)	0.69 ± 0.35 (0.22-1.50)	0.99 ± 0.41 (0.15 -1.68)	0.18 ± 0.04 (0.10-0.25)	0.11 ± 0.03 (0.07 -0.17)	0.24 ± 0.12 (0.01 -0.45)	0.20 ± 0.05 (0.11-0.27)
Methanol assimilation (x 10^{-2}) (nmol L ⁻¹ h ⁻¹)	0.51 ± 0.54 ($0.00-2.24$)	$\begin{array}{c} 0.54 {\pm} 0.53 \\ (0.00 {-} 2.23) \end{array}$	0.53 ± 0.56 (0.17-1.51)	NA	0.67 ± 0.66 (0.00-2.24)	0.19 ± 0.16 (0.00-0.57)	NA
BLI (pmol L^{-1} h ⁻¹)	9.4 ± 8.9 (0.5-60.2)	7.7 ± 4.0 (0.9 -14.2)	9.7 ± 14.2 (1.0-60.2)	8.0 ± 4.3 (2.0–17.0)	13.7 ± 7.9 (0.6–26.4)	8.2 ± 9.5 (0.5-41.5)	NA
^a BP(TCF) (ng C L^{-1} h ⁻¹)	14.6 ± 13.8 (0.8–96.1)	11.9 ± 6.1 (1.5 -22.0)	15.0 ± 21.9 (1.5–96.1)	12.4 ± 6.6 (3.2-26.3)	21.2±12.2 (1.0-41.0)	12.7 ± 14.8 (0.8-64.3)	NA
^b BP (ECF) (ng C L^{-1} h^{-1})	4.8 ± 4.6 (0.3–31.6)	3.9 ± 2.0 (0.5–7.2)	4.9 ± 7.2 (0.5–31.6)	4.1 ± 2.2 (1.0-8.7)	7.0 ± 4.0 (0.3-13.5)	4.2 ± 4.9 (0.3–21.1)	NA
Numbers of heterotrophic bacteria (x10 ⁵) (cells mL ⁻¹)	6.5 ± 6.3 (1.4-82.6)	NA	NA	5.8 ± 2.0 (1.6-9.8)	8.8±10.3 (1.4-82.6)	5.4 ± 4.4 (1.5-35.8)	NA
Numbers of <i>Prochlorococcus</i> sp. $(x10^5$ cells mL ⁻¹)	$1.12 \pm 4.62 \\ (0.0 - 4.62)$	0.91 ± 0.07 (0.0-2.56)	0.89 ± 0.71 (0.0-4.21)	1.52 ± 1.23 (0.0-4.19)	1.67 ± 0.2 (0.0-4.62)	1.20 ± 0.01 (0.0-2.45)	0.35 ± 0.22 (0.0-2.33)
Numbers of <i>Synechococcus</i> sp. (x10 ⁴ cells mL ⁻¹)	$\begin{array}{c} 1.64 \pm 31.4 \\ (0.0 - 31.4) \end{array}$	1.96 ± 3.61 (0.0-12.7)	0.18 ± 0.21 (0.0-0.93)	0.15 ± 0.17 (0.0-0.73)	1.34 ± 2.69 (0.0-12.8)	0.14 ± 0.13 (0.0-0.79)	8.30 ± 10.3 (0.02-31.4)
^c Methanol (nM)	143 ± 82 (38-420)	110 ± 126 (38-420)	203±38 (154–281)	193±46 (148–278)	148 ± 37 (117-241)	110±33 (58–176)	132
^a Theoretical conversion factor (TCF) 1	l.55 kg C mol leu	i ⁻¹ , ^b empirical c	conversion factor	or (ECF) 0.51 k	g C mol leu ⁻¹ , ^c l	From Beale et a	ıl., (2013)